Search results

Search for "covalent triazine frameworks" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • Processing and School of Materials Science and Engineering, Wuhan University of Technology, 430070 Wuhan, China Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 10.3762/bjnano.11.62 Abstract Covalent triazine frameworks (CTFs) are
  • ][11][12][13]. The performance of the nickel catalysts could be further enhanced via modifications, such as the usage of carbon supports including N-doped graphene [14], active carbon [15], graphene oxide [16][17], carbon nanotubes [12][18] and covalent triazine frameworks (CTFs) [19][20]. CTFs are
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Processing nanoporous organic polymers in liquid amines

  • Jeehye Byun,
  • Damien Thirion and
  • Cafer T. Yavuz

Beilstein J. Nanotechnol. 2019, 10, 1844–1850, doi:10.3762/bjnano.10.179

Graphical Abstract
  • organic frameworks [6], conjugated microporous polymers [7], covalent triazine frameworks [8], porous aromatic frameworks [9], porous polymer networks [10], and polymers of intrinsic microporosity [11]. We have been working on nanoporous covalent organic polymers (COP), focusing on structural durability
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • Federal University, Kremlyovskaya Str. 18, 420008 Kazan, Russia 10.3762/bjnano.10.121 Abstract The rational design and synthesis of covalent triazine frameworks (CTFs) from defined dicyano-aryl building blocks or their binary mixtures is of fundamental importance for a judicious tuning of the chemico
  • . Keywords: covalent triazine frameworks; CO2 adsorption; CO2/N2 selectivity; dehydrogenation catalysis; ionothermal conditions; Introduction Recent years have witnessed an increasing interest in carbon-based nanomaterials as functional devices for energy-related applications [1]. Their unique properties
  • modification, e.g., the inclusion of heterocycles and light elements within the organic functional units. Covalent triazine frameworks (CTFs) represent a POP subclass of highly crosslinked porous polymers, generated by the cyclotrimerization of dicyano-(hetero)aryl building blocks [12][13]. Under ionothermal
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019
Other Beilstein-Institut Open Science Activities